Potential and Limitations of Machine Learning for Modeling Warm‐Rain Cloud Microphysical Processes
نویسندگان
چکیده
منابع مشابه
development and implementation of an optimized control strategy for induction machine in an electric vehicle
in the area of automotive engineering there is a tendency to more electrification of power train. in this work control of an induction machine for the application of electric vehicle is investigated. through the changing operating point of the machine, adapting the rotor magnetization current seems to be useful to increase the machines efficiency. in the literature there are many approaches wh...
15 صفحه اولA risk model for cloud processes
Traditionally, risk assessment consists of evaluating the probability of "feared events", corresponding to known threats and attacks, as well as these events' severity, corresponding to their impact on one or more stakeholders. Assessing risks of cloud-based processes is particularly difficult due to lack of historical data on attacks, which has prevented frequency-based identification...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملGeneral Limitations on Machine Learning
Machine learning is widely regarded as a tool for overcoming the bottleneck in knowledge acquisition. Especially in knowledge-intensive domains there is the hope for using machine learning techniques successfully. This paper prove the general inability of simple learning programs to learn complex concepts from few input data. This holds independently of the epistemological problems of inductive...
متن کاملGaussian Processes For Machine Learning
Gaussian processes (GPs) are natural generalisations of multivariate Gaussian random variables to infinite (countably or continuous) index sets. GPs have been applied in a large number of fields to a diverse range of ends, and very many deep theoretical analyses of various properties are available. This paper gives an introduction to Gaussian processes on a fairly elementary level with special ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Advances in Modeling Earth Systems
سال: 2020
ISSN: 1942-2466,1942-2466
DOI: 10.1029/2020ms002301